skip to main content


Search for: All records

Creators/Authors contains: "Leefmans, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Abstract Cellular automata are a class of computational models based on simple rules and algorithms that can simulate a wide range of complex phenomena. However, when using conventional computers, these ‘simple’ rules are only encapsulated at the level of software. This can be taken one step further by simplifying the underlying physical hardware. Here, we propose and implement a simple photonic hardware platform for simulating complex phenomena based on cellular automata. Using this special-purpose computer, we experimentally demonstrate complex phenomena, including fractals, chaos, and solitons, which are typically associated with much more complex physical systems. The flexibility and programmability of our photonic computer present new opportunities to simulate and harness complexity for efficient, robust, and decentralized information processing using light. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    Topology is central to phenomena that arise in a variety of fields, ranging from quantum field theory to quantum information science to condensed matter physics. Recently, the study of topology has been extended to open systems, leading to a plethora of intriguing effects such as topological lasing, exceptional surfaces, as well as non-Hermitian bulk-boundary correspondence. Here, we show that Bloch eigenstates associated with lattices with dissipatively coupled elements exhibit geometric properties that cannot be described via scalar Berry phases, in sharp contrast to conservative Hamiltonians with non-degenerate energy levels. This unusual behavior can be attributed to the significant population exchanges among the corresponding dissipation bands of such lattices. Using a one-dimensional example, we show both theoretically and experimentally that such population exchanges can manifest themselves via matrix-valued operators in the corresponding Bloch dynamics. In two-dimensional lattices, such matrix-valued operators can form non-commuting pairs and lead to non-Abelian dynamics, as confirmed by our numerical simulations. Our results point to new ways in which the combined effect of topology and engineered dissipation can lead to non-Abelian topological phenomena.

     
    more » « less
  4. Abstract Topological insulators possess protected boundary states which are robust against disorders and have immense implications in both fermionic and bosonic systems. Harnessing these topological effects in nonequilibrium scenarios is highly desirable and has led to the development of topological lasers. The topologically protected boundary states usually lie within the bulk bandgap, and selectively exciting them without inducing instability in the bulk modes of bosonic systems is challenging. Here, we consider topological parametrically driven nonlinear resonator arrays that possess complex eigenvalues only in the edge modes in spite of the uniform pumping. We show parametric oscillation occurs in the topological boundary modes of one and two dimensional systems as well as in the corner modes of a higher order topological insulator system. Furthermore, we demonstrate squeezing dynamics below the oscillation threshold, where the quantum properties of the topological edge modes are robust against certain disorders. Our work sheds light on the dynamics of weakly nonlinear topological systems driven out-of-equilibrium and reveals their intriguing behavior in the quantum regime. 
    more » « less
  5. Topological phases feature robust edge states that are protected against the effects of defects and disorder. These phases have largely been studied in conservatively coupled systems, in which non-trivial topological invariants arise in the energy or frequency bands of a system. Here we show that, in dissipatively coupled systems, non-trivial topological invariants can emerge purely in a system’s dissipation. Using a highly scalable and easily reconfigurable time-multiplexed photonic resonator network, we experimentally demonstrate one- and two-dimensional lattices that host robust topological edge states with isolated dissipation rates, measure a dissipation spectrum that possesses a non-trivial topological invariant, and demonst rate topological protection of the network’s quality factor. The topologically non-trivial dissipation of our system exposes new opportunities to engineer dissipation in both classical and quantum systems. Moreover, our experimental platform’s straightforward scaling to higher dimensions and its ability to implement inhomogeneous, non-reciprocal and long range couplings may enable future work in the study of synthetic dimensions. 
    more » « less
  6. null (Ed.)